반응형
LIST
1. IntroductionLoRA paper: https://arxiv.org/abs/2106.09685LoRA github: https://github.com/microsoft/LoRA 이전 트랜스포머 논문https://minyoungxi.tistory.com/104 [논문리뷰] Attention is all you need - 트랜스포머를 모르면 취업을 못해요Transformer의 탄생 배경 자연어 처리 분야에서 순환신경망(RNN)은 오랫동안 메인 모델로 사용되어 왔습니다. 하지만 RNN은 길이가 길어질수록 성능이 저하되는 단점이 있었습니다. 그래서 어텐션(Attminyoungxi.tistory.com논문이 다루는 task & 해당 task에서 기존 연구 한계점이 논문은 자연어 처리(Natural ..
1. Introduction 논문이 다루는 task본 논문이 다루는 task는 온톨로지 엔지니어링에 딥러닝 기술, 특히 언어 모델을 통합하는 것입니다. 온톨로지 엔지니어링은 지식 표현과 추론을 위한 핵심 분야로, 온톨로지 설계, 구축, 평가, 유지보수 등 다양한 단계를 포함합니다. 온톨로지는 인간과 기계 모두 이해할 수 있는 개념과 관계의 체계를 제공함으로써 지식 공유와 활용을 촉진합니다. 최근 거대 언어 모델의 등장으로 기존 온톨로지 엔지니어링 방식의 한계를 극복할 수 있는 가능성이 열리고 있습니다. 예를 들어, BERT 등의 언어 모델은 풍부한 맥락 정보를 활용해 개념 간 유사도를 판단할 수 있어 온톨로지 정렬이나 완성 작업에 효과적입니다. 그러나 딥러닝 모델은 그 예측 과정이 불투명하고 대량의 학..